Double Metric Resolvability in Convex Polytopes

نویسندگان

چکیده

Nowadays, the study of source localization in complex networks is a critical issue. Localization has been investigated using variety feasible models. To identify network’s diffusion, it necessary to find vertex from which observed diffusion spreads. Detecting virus network equivalent finding minimal doubly resolving set (MDRS) network. This paper calculates sets (DRSs) for certain convex polytope structures calculate their double metric dimension (DMD). It concluded that cardinality MDRSs these polytopes finite and constant.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the metric dimension of convex polytopes ∗

Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as follows: the order |V (G)| = φ(n) and lim n→∞ φ(n) = ∞ . If there exists a constant C > 0 such that dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension. If all graphs in F hav...

متن کامل

On the metric dimension of rotationally-symmetric convex polytopes∗

Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F be a family of connected graphs Gn : F = (Gn)n ≥ 1 depending on n as follows: the order |V (G)| = φ(n) and lim n→∞ φ(n) = ∞. If there exists a constant C > 0 such that dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension, otherwise F has unbou...

متن کامل

Classification of Finite Metric Spaces and Combinatorics of Convex Polytopes

We describe the canonical correspondence between finite metric spaces and symmetric convex polytopes, and formulate the problem about classification of the metric spaces in terms of combinatorial structure of those polytopes.

متن کامل

Convex Polytopes

The study of convex polytopes in Euclidean space of two and three dimensions is one of the oldest branches of mathematics. Yet many of the more interesting properties of polytopes have been discovered comparatively recently, and are still unknown to the majority of mathematicians. In this paper we shall survey the subject, mentioning some of the most recent results, and stating the more importa...

متن کامل

Basic Properties of Convex Polytopes

Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their importance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry (toric varieties) to linear and combinatorial optimization. In this chapter we try to give a short introduction, pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2022

ISSN: ['2314-4785', '2314-4629']

DOI: https://doi.org/10.1155/2022/5884924